TechRxiv

Explainable Neural Dynamics Models for Motor Temperature Prediction

Download (2.53 MB)
preprint
posted on 2023-11-22, 04:25 authored by Xinyuan LiaoXinyuan Liao, Shaowei Chen, Yunxiang Long, Shuai ZhaoShuai Zhao

The permanent magnet synchronous motor finds extensive use in industrial applications, and the development of effective thermal management solutions is crucial to enhance its power density. Accurate temperature prediction of the permanent magnet synchronous motor serves as the fundamental basis for designing effective thermal management strategies. Model-based prediction methods exhibit superior real-time performance, but the intricate modeling process requires substantial expert knowledge guidance and lacks versatility. Conversely, data-driven prediction methods, while offering flexibility, often lack physical implications in terms of system dynamics. This paper proposed a structured linear neural dynamics model for motor temperature prediction. This model is data-driven, with prior knowledge integrated into its structure, which preserves flexibility while guaranteeing system stability through the Perron-Frobenius theorem. Additionally, this paper achieves the decoupling of control input from state transitions and the embedded deployment of this model. The method is validated with a real dataset. The lightweight feature is demonstrated by the implementation of an STM32 Microcontroller with 1.808 KB and 27 mW. The paper is accompanied with the open source data and code at GitHub: https://github.com/ms140429/Explainable-Neural-Dynamics-Model

History

Email Address of Submitting Author

szh@energy.aau.dk

ORCID of Submitting Author

0000-0001-7441-5434

Submitting Author's Institution

AAU Energy, Aalborg University

Submitting Author's Country

  • Denmark

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC